PROGRAM EXECUTIVE OFFICE FOR SIMULATION, TRAINING & INSTRUMENTATION

OneSAF and Future Training Technologies

ROGER SMITH Chief Scientist & CTO US Army PEO STRI

OneSAF Users Conference 20 August 2007, Orlando, FL

Approved for Public Release. Security and OPSEC Review Completed: No Issues.

STED STATES AR

PUISITION COP

Vision & Innovation

- "The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable man."
 - Man and Superman, 1903, George Bernard Shaw
- "Where there is no vision the people perish."
 - Proverbs 29:18

High Performance Computing

 Future Power
 SPP, Clusters, Cores, GPU, Cell, FPGA

 Simulation as an IT Service

 New Structure for Sim Centers
 One-to-Many Exercise Support
 On Demand Training

Global Reach

AND STATES SALE	High Performance Computing		
Shared Memory	Cluster	Multi-Core	Specialized
Multiple CPUs directly access shared memory	Multiple machines tied together with a fast network.	Single Chip with multiple CPUs inside of it. Multiple versions of cache and CPU-specific memory.	Graphic Processing Unit (GPU), Field- Programmable Gate Array (FPGA)
IBM or Cray Supercomputer, SGI Altix	Beowulf, Sun Grid, Rackspace – using Myranet or Infiniband	AMD Athlon 64 X2, Intel Core 2 quad, Sun UltraSPARC, IBM Cell	Nvidia & ATI- based graphics cards, Nvidia Tesla, Xilinx

HPC Example Machine

- SGI® Altix® 4700
 - System scales to 1024 cores in a single system image
 - Memory address space to over 100TB
- Independently add Compute, Memory, I/O, or Specialty Blades
- Excellent power and space efficiency
- Typical Single Rack Statistics:
- 64 Dual-Core Itanium-2 (Montecito) processors
 - 2 sockets per blade
- 128 cores per rack
 - 1.6 GHz
 - 6.4 GFLOPs per core
 - 820 GFLOPs per rack
 - 128-, 256- or 521-GB memory per rack typical

- Dual Redundant system disks
- System console port
- DVD / RW
- 10/100 Ethernet (SGI)
- 2 PCI-X slots
- SuSE Linux (SLES 10)
- Intel F90, F77, C and C++
- Multiple storage options

Shared Memory

Tight connection between Sims distributed across multiple CPU and memory. E.g. Very large single instance of WARSIM on 128 processors

HPC in the Sim Center

<u>Cluster</u>

Many Sim instances on individual CPUs with local memory. E.g. Multiple geographically divided OneSAF instances. <u>GPU</u> Off-loaded vector operations like rendering and LOS. E.g. Graphic heads for HPC or LOS for sims.

Multi-core

Every CPU in the machine can support multiple threads. E.g. Movement, AI, Sensors parsed off to a core.

HPC Simulation Experiments

- Experiments and Experience with HPC
 - ✤ JFCOM J9 JSAF
 - Orlando SAIC OneSAF Cloud Plumes
 - UNC Chapel Hill OneSAF LOS
 - Huntsville RTTC OneSAF

Future Computing

- ✤ Multicore It is here now. Look for annual doubling of cores.
- ✤ GPU Useful applications. Limited by graphic card memory.
- ✤ FPGA Code not specific enough to configure hardware.
- ✤ Cell Still too early to understand programming model.
- Physics & AI Chips Too soon

Simulation as an IT Service: Google Analogy

- Search box installed in my house, dedicated engineer to customize it for my needs
- Google Search Capacity Limits
 - Google has only enough processors to handle 500 simultaneous searches in Orlando. The 501+ search receive a "wait" message.
- > Customer-centric IT Services
 - Vendors purchase sufficient resources to meet growing customer needs, automate operations so support staff are not a bottleneck, allocate processing power as necessary when loads change, structure to meet customer demands vs. provider convenience

- > 21st century networks and computing systems will allow us to host and deliver training more efficiently than we have in the past
- We will have the potential to reach every unit in the Army around the world
- Must overcome the one-to-one bottleneck to even get close to the potential that is there
- Supporting training to the entire force will take a lot more computing and people than we have now
 - But it cannot take N times more or the Army cannot afford it

Summary

