PEO-STRI / PEO-C3T Collaboration Meeting 9-10 July 2008, Fort Monmouth, NJ



## Interactive Training with High Performance Computers

Roger Smith Chief Technology Officer U.S. Army PEO-STRI roger.smith14@us.army.mil

> Approved for Public & International Release. Security and OPSEC Review Completed: No Issues.

## **Objectives**

- Leverage the power of HPC as the server farm for interactive simulation for training
  - OneSAF
  - WARSIM
- Multiple simultaneous exercises supported from a single simulation center
- Physics-based object, weather, and terrain modeling (put the "reality" in virtual reality)
- Tighter network connections between applications to eliminate lag

#### **Predecessor Experiments**

- Physics-based Environment for Urban Operations
  - HPCMO, STRI, SAIC
- Millennium Challenge Exercise Clutter
  JFCOM, Maui SCC, Alion
- C4ISR On-the-Move (OTM) program
  CERDEC, HPTi, SAIC, HPCMO

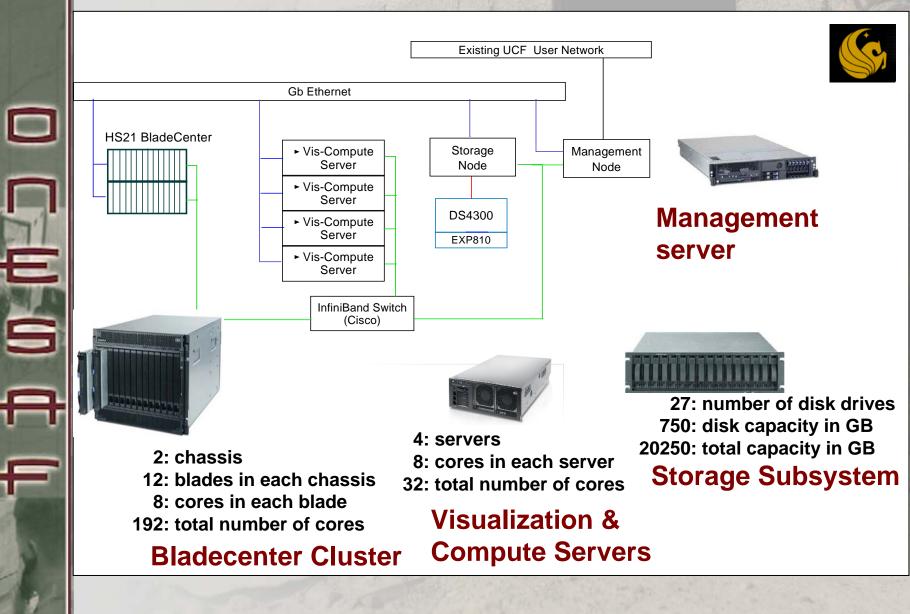
#### **One Semi-Automated Forces (OneSAF)**

• A composable, next generation simulation architecture supporting both Computer Generated Forces (CGF) and SAF operations

- Provides a full range of operations, systems, and control processes (TTP)
- Supports modeling from entity up to brigade level
- Supports DIS, HLA, MSDL, JC3IEDM and USA ABCS interoperability
- Provides variable levels of composability, fidelity and representation
- Supports multiple Army M&S domain (ACR, RDA, TEMO) applications.

• Urban Operations with Contemporary Operating Environment (COE) Focus

V2.0 Released Feb 2008


Capable of replacing US Army legacy entity-based simulations: BBS, OTB / ModSAF, CCTT / AVCATT SAF, Janus (A&T), JCATS MOUT Platform Independent (Linux / Windows)

Software only

Software Distribution to: • RDECs / Battle Labs / Active Duty Brigades & Battalions

- Service / Joint Organizations
- International Partners
- USG / Academia

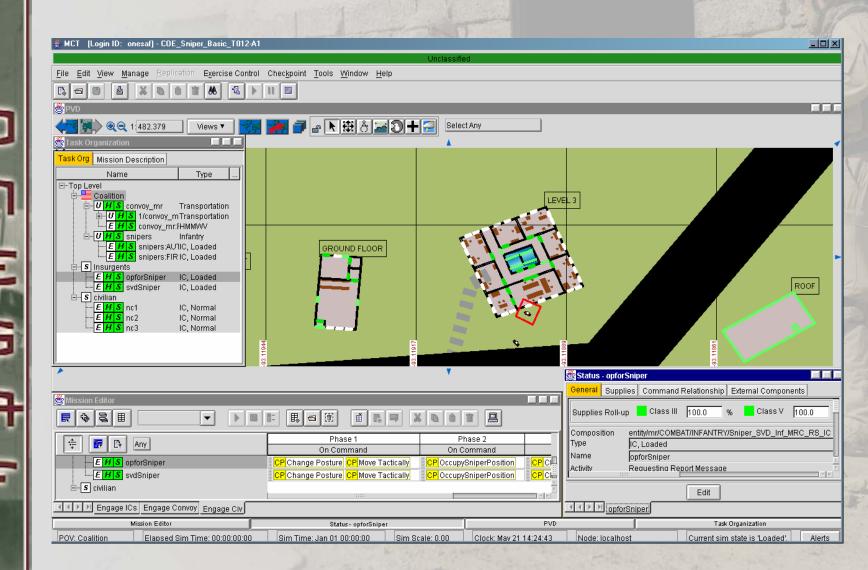
## **Team Orlando HPC Server Hardware**



#### **IBM HS21 Bladecenter Cluster**



|          |                         | Installed in Each Blade                                 |
|----------|-------------------------|---------------------------------------------------------|
| S. Chile | Intel Xeon<br>Processor | 2 quad-core E5450<br>(Harpertown)<br>8 cores @ 3.0 GHz  |
|          | L2 Cache                | 2 X 2 X 6144 KiB                                        |
|          | Memory                  | 8 GB, 667 MHz, DDR2                                     |
|          | Front Side Bus          | 1333 MT/s                                               |
|          | internal disk           | 73 GB, 10K RPM SAS                                      |
| The Way  | Power                   | 80 W                                                    |
| 1 6      | Ethernet                | 1 Gb Ethernet                                           |
| AL IN    | InfiniBand              | Single-port 4X DDR IB PCI-E<br>HCA (Cisco)              |
|          | Linux OS                | Red Hat V5                                              |
|          | Compilers               | GCC<br>Intel Fortran V10.1<br>Intel C++ V10.1<br>PGI V7 |


Orlando HPC: 24 Blades, 192 cores

# **OneSAF HPC Research Problems**

- Porting
  - Host OneSAF Sim Core and MCT on HPC
- Computational Distribution
  - Efficiency of thread distribution in HPC environment
  - Function of JVM, Node/Process/Core availability
- MCT Interface
  - Internal to HPC with VNC video exported
  - External with efficient network comms
- Light Interface

- Operate via light GUI interface outside of HPC (e.g. Aries game interface, Browser interface)
- Infiniband Network
  - Multiple instances using Infiniband vs. Ethernet to communicate

#### **MANAGEMENT AND CONTROL TOOL**



## Conclusion

- Reduce operational costs for hardware, shipping, set-up time, travel, staffing
- Increase soldier/unit access to training systems
- Increase exercise reliability and availability
- Increase model fidelity

Increase model synchronization