
Simulating Information Warfare
Using the HLA Management Object Model

Roger Smith

BTG Inc.
Orlando, Florida 32765

smithr@modelbenders.com

Keywords:
Information Operations, High Level Architecture, Management Object Model, Military Simulation

ABSTRACT: This paper describes concepts and techniques for implementing Information Operations within a
distributed simulation environment supported by the High Level Architecture. The HLA Management Object Model
provides services that are specifically applicable to the types of operations that IO can have on combat objects. The
paper provides a functional blueprint for creating an IO federate that can operate in any HLA federation.

1. Introduction to Information Operations

The terms “information operations” and “information
warfare” are relatively new descriptions for military
actions. But, the concepts behind the terms are very
ancient. These operations refer to various techniques for
controlling or influencing the knowledge, perception,
judgement, and decision making of an enemy force. Prior
to the electronic age “information operations” may have
been accomplished through rumors, torture, and
intercepting couriers. More modern applications of this
type of warfare include public affairs, civil affairs,
physical destruction, electronic warfare, and computer
network defense and attack [4].

Information operations vary from the very obvious and
unclassified to the very protected. The concepts presented
in this paper are based on unclassified operations and the
abstraction of techniques that are very well known in
military operations. The mechanisms used to implement
these operations may also be useful for more modeling
more exotic forms of IO.

2. Applications in Interoperable Simulations

Simulating IO presents very different challenges in a
single system and than it does within a distributed system.
In a single system, is possible to place IO models in the
software such that they access and interact with all objects
and events in the simulation. In a distributed simulation it
is much more difficult for any IO model to access and
impact objects and interactions generated and consumed
by different simulations all over a network.

When adding an IO simulation to an existing federation of
simulations it is very difficult, or impossible, to modify
all of the federates to enable IO impacts on their
operations. Previous papers have presented techniques
that attempt to accomplish this with minimal impacts on
the receiving federates [3]. Those techniques were very
intrusive to the existing simulations or they did not
guarantee that IO operations would be recognized by the
target system.

Since all DOD simulations are becoming HLA -compliant
it is desirable to design an IO modeling technique that can

be applied to all simulations that are using the HLA Run-
time Infrastructure (RTI). The HLA interface
specification defines a wide variety of services that are
available to support distributed, interoperable simulations
[5]. The Object Management services are used to
exchange information among federates. These assume
that each federate has been programmed to respond to the
combat effects delivered from remote simulations through
these services. For most simulations, the actions
supported fall into categories like Dynamics (physical
movement), Exchange (combat), Electronic Interaction
(Communication), and other similar interactions.
However, most simulations were constructed without an
appreciation of the impacts that IO could have on the
simulated objects and, therefore, omitted any mechanisms
to respond to IO intervention. These models are
impervious to effects of IO.

One recourse is to cast IO in terms of one of the known
combat interaction types. It is possible for an IO
deception to be modeled as the delivery of misleading
communications messages. It is also possible to represent
electronic warfare as the delivery of RF noise through the
services and FOM objects used for standard combat.

However, some IO operations are more subtle and can not
accurately be cast as combat interactions. It is desirable
to expand the number of options available for modeling
these IO effects. Additional, and hopefully more flexible,
ways of representing IO in distributed simulation should
support more modern forms of combat in training and
analytical applications. This would forestall the tendency
to distort IO to fit into existing combat modeling
interactions.

It may also be necessary or desirable to add IO to a
federation without imposing unrealistic requirements on
the definition of the FOM. IO effects may not be
recognizable by many combat federates that are being
targeted. The very character of real IO is that it enters the
battlefield independent of those that it targets and without
requiring their compliance to be effective.

IO attempts to stand between a combat object and its
access to information. The purpose is to deny, delay, or
distort the information accessible to the combat object. A
simulation technique that could place the IO simulation
conceptually between the combat object and its
information source would be ideal. It is impractical or
impossible for the IO software to be inserted into a
federation such that it is physically between the combat
object and its information flow. Therefore, we are
searching for ways to model IO such that it is
conceptually in that position for any combat object in the
federation [3].

3. High Level Architecture Management
Object Model

The High Level Architecture is the mandated architecture
for bringing simulation systems together into an
interoperable federation. This is accomplished through
the imposition of a set of HLA Rules, an Interface
Specification, and the Object Model Templates. The
interface specification provides services that allow
simulations to exchange data in a managed and consistent
manner. These HLA services support a wide variety of
operations as defined in [5]. One class of these services is
known as the Management Object Model. The HLA
Interface Specification document introduces these with:

“Management object model (MOM) facilities can
be used by federates and the RTI to provide insight
into the operations of federates and the RTI and to
control the functioning of the RTI, the federation,
and individual federates. The ability to monitor
and control elements of a federation is required for
the proper functioning of the federation
execution.”

The MOM services are specifically intended to allow one
federate to “control the functioning of … individual
federates”. These services were envisioned as being
invoked by a federate charged with the responsibility of
managing and monitoring the performance of the
federation. However, they are also accessible to
simulation federates, like an IO federation or operator
terminal. The MOM provides services that allow any
federate to access and influence the information available
to any other federate. In this sense they are performing
the same types of functions carried out under IO missions.

4. MOM Services Useful for Information

Operations

Certain MOM services could be combined to support IO
simulation that is effective against all combat objects in
the federation. These services could be used without
imposing unreasonable demands on the FOM that is
developed for a combat-oriented federation. To
demonstrate how such an IO federate could be created, we
will focus on the RTI operations that would be performed,
and will omit discussions about specific modeling
software that could represent IO effects.

The HLA MOM is structured around services that could
be organized into an IO package as shown in Table 1. In
this table we have identified services that must be invoked
to begin a specific IO function. An operational IO
federate would also invoke services from the “standard”
categories of the HLA interface specification and would
make use of the reporting services that are triggered by

the services listed below. The detailed use of those
supporting services is not described in this paper to allow
us to focus on the core IO effects we would like to insert
into a federation. More details on those services can be
found [5].

These twelve services can be used by an IO federate to
influence the information that is received by or
transmitted from any federate in the simulation.
Combining these with software models or operator
actions it is possible to stop, redirect, delay, or alter the

content of information delivered to a federate. The MOM
describes many other services can could be used for
different types of Information Operations. This list is
intended simply to demonstrate the feasibility of this
approach.

5. Conceptual IO Simulation Application

To illustrate how the above services could be packaged
into an IO federate we will provide examples of actions
that can be carried out with these services. For the
purposes of illustration and clarity we assume that the IO
federate is a GUI-based tool that allows human operators
to specify the actions that should be taken, but which
hides the complexity of invoking the HLA services. This
will allow us to de-couple the implementation of IO in a
distributed federation from the details involved in creating
IO software models to invoke these actions automatically.
It also allows us to describe these actions in very generic
terms that do not imply real IO capabilities which may be
protected information.

All of the operations described below begin by invoking
the MOM services RequestPublications,
RequestSubscriptions, and RequestOwnedObjects. The
RTI will deliver the requested information to the IO
federate through the “Report” service corresponding to

each of the “Request” services listed above [5]. These
services allow the IO federate to construct a perception of
the objects and interactions that are published by each
federate, subscribed to by each federate, and the objects
owned by each federate. This information can then be
presented to a human operator to allow him/her to plan

and execute operations against specific objects and
federates. The IO federate may use standard subscription
mechanisms to maintain current attribute values for each
of the objects discovered through the IO use of the MOM
services. This functionality is included in many existing
HLA products that implement plan-view displays and
stealth viewers. There is no need to implement this
differently for IO federates.

5.1 Deny Information

IO can be used to deny the enemy access to information.
This may be done through techniques like electronic
warfare or the destruction of command units.

Upon understanding which objects and interactions are
being received by each federate, the IO operator may
designate which of these could be prevented through the
application of a specific IO asset or technique. In
response to the operator’s desire to stop information
flowing to a specific combat federate, the IO federate
would invoke SubscribeObjectClassAttributes or

Table 1. MOM Services Useful to an Information Operations Simulation
MOM Service Description of Operation
RequestPublications Request the publication data of a federate.
RequestSubscriptions Request the subscription data of a federate.
RequestObjectsOwned Request a list of objects owned by a federate.
PublishObjectClass Cause a federate to begin publishing an object attribute
UnpublishObjectClass Cause a federate to stop publishing an object attribute
PublishInteractionClass Cause a federate to begin publishing an interaction
UnpublishInteractionClass Cause a federate to stop publishing an interaction
SubscribeObjectClassAttributes Cause a federate to begin subscribing to object attributes
UnsubscribeObjectClass Cause a federate to stop subscribing to object classes
SubscribeInteractionClass Cause a federate to begin subscribing to interaction classes
UnsubscribeInteractionClass Cause a federate to stop subscribing to interaction classes

Table 2. MOM Services for Preparing IO Federate Actions
Mom Service IO Representation
RequestPublications Acquire a list of all object classes, attributes, and interactions being

published by the combat federate to be targeted by IO.
RequestSubscriptions Acquire a list of all object classes, attributes, and interactions being

subscribed to by the combat federate to be targeted by IO.

UnsubscribeInteractionClass on behalf of the combat
federate being influenced. The arguments passed to the
RTI from the IO federate are the designator of the combat
federate and the attributes of an object class to which that
federate will now subscribe. To deny access to an
attribute the IO federate would specify a list of attributes
that omits the one or more that IO has the ability to deny
the receiving combat federate. Unsubscribing to an
attribute is accomplished by re-specifying the list of
attributes desired and leaving out the ones that are to be
“unsubscribed”. For interactions the RTI MOM provide a
specific service for unsubscribing to an entire class. The
IO federate’s Local RTI Component (LRC) will deliver
this command to the LRC of the combat federate. The
LRC will change its subscription appropriately, based on

the command it has received. The fact that the command
did not actually originate from the simulation models
served by this LRC does not prevent the command from
being accepted and acted upon.

These types of actions can be captured by any recorder or
analysis software that is logging distributed simulation
interactions. This allows exercise analysts to identify that
IO assets are being employed and against which targets.
This traceability is important in insuring that IO is
induced responsibly and that the training audience is
debriefed on the causes of combat events experienced.
When the IO action is terminated the IO federate is
responsible for reversing the actions taken against the
federates subscriptions. This is accomplished through the
invocation of the SubscribeObjectClassAttributes and/or
SubscribeInteractionClass services and specifying the
original attribute list or interaction class that the combat
federate was subscribed to.

The disadvantage of this approach is that it can not be
used selectively against specific instances of objects
within the combat federate while leaving the subscriptions
of other objects in the federate intact. This seems to be an
excessive application of the technique. It subjects all of
the objects modeled by the federate to the same level of
IO intervention. If the federate is a manned flight
simulator controlling a single aircraft, this may be very
appropriate. But if the federate is a SAF which controls
multiple objects distributed around the battlefield, this

technique does not have the fidelity to accurately
represent the effects of IO.

A related IO effect can be imposed by invoking the
UnpublishObjectClass or UnpublishInteractionClass on
behalf of the federate that is publishing this information.
An IO technique may be so dominant on the originator of
information that this approach would be more appropriate.
A major disadvantage of this is that all system data
collectors also lose access to the information. This can
negatively impact the ability of control personnel to
monitor the progress of simulation objects. Note that
similar care must be taken to specify the attributes of
objects that are being published and unpublished.

5.2 Delay Delivery

An alternative to simply cutting a federate’s access to all
objects or interactions of a specific class is to delay the
delivery of information for some amount of time. To
accomplish this the FOM must contain two varying
representations of the same object or interaction class.
These pairs contain predominantly the same information,
though some additional attributes or parameters may exist
to assist in implementing IO.

Delay of delivery of information begins with the same
“unsubscription” services described above. Once
disconnected from its original information source, the
combat federate would be ordered to subscribe to the
related object or interaction class that was built into FOM
for that purpose. This would be accomplished through the
SubscribeObjectClassAttributes and
SubscribeInteractionClass services and specifying the
alternate object attributes or interaction that was placed in
the FOM to accomplish this redirection. The IO federate
would subscribe to the original object or interaction class
that the combat federate was removed from. The IO
federate is then in control of the data flow needed by the
combat federate. It would republish the data it receives
from the original object or interaction into the alternate
object or interaction that the combat federate was directed
to listen to. The IO federate would impose a delay time
on the retransmission of the data to the combat federate.
This would cause the object attribute or interaction to be
received at “time constrained” federates at the appropriate

Table 3. MOM Services for IO Denial of Information
Mom Service IO Representation
UnsubscribeInteractionClass Blind a federate to an entire class of interactions.

e.g. Electronic Warfare jams receipt of all radio transmissions.
SubscribeInteractionClass Discontinue IO action against the federate interactions.

e.g. Termination of Electronic Warfare against radio transmissions.
SubscribeObjectClassAttributes Change the list of class attributes to which a federate is subscribed.

e.g. Electronic Warfare jamming blinds federate to aircraft locations.

point in the future. However, enforcing the delayed
receipt of information at a federate that is not time
constrained would require the IO federate to hold onto the
captured information for the desired delay time.

One of the benefits of this approach is that it allows the
IO federate to distinguish between individual object
instances being published and to apply IO techniques only
to those that should be effected. A disadvantage is that it
places the IO federate in the data flow path of all of the
objects on the combat federate being affected. This
would often result in additional network traffic for the
objects or interactions that are being retransmitted. The
disadvantage of impacting all objects on the targeted
federate remains.

5.3 Deceive Content

Corrupting Content

Deceiving federates about the content of information
would be accomplished through the delay technique
described above with additional logic in the IO federate.
Once the object or interaction information had been
redirected such that it was being brokered by the IO
federate, the IO federate will modify the information that
it is controlling. These modifications may be carried out
from an operator window or by an IO software model.
The use of a human operator would obviously add
noticeable delay to the delivery of the modified
information.

The disadvantage of this approach remains that it imposes
the same degree of deception on all objects within the
combat federate that is being affected.

Injecting Misleading Content

Deception operations can also be carried out by simply
publishing additional object instances or interactions that
are already described in the FOM. An IO federate may be
responsible for representing radar reflectors, chaff clouds,
and physical decoys on the battlefield. All of these may
draw combat objects into engagements with them rather
than with real assets. An IO federate may also publish
communications or radar emission interactions deceiving
the enemy into acting on incorrect or misleading data.

These operations do not require the use of the MOM, but
can be accomplished through the “standard” HLA
services.

6. Conclusion

This paper presents some of the first concepts for
implementing information operations in a distributed,
interactive simulation. These ideas are in their formative
stages and are presented here to demonstrate avenues that
can be pursued immediately by an organization that is
interested in adding IO effects to an HLA federation.

The disadvantages listed in each section are indications
that additional thought and experimentation are needed.
At this point in time it is not clear that a military service
or government agency is interested in bringing IO into the
distributed simulation domain. Our hope is that papers of
this type will generate discussion on the topic and attract
organizations that would benefit by exploring these areas.

7. References

[1] Allen, Patrick D. and Demchak, Chris C. “The Need

for, and Design of, an IO-ISR Federation of
Simulations”. 2000 Spring Simulation
Interoperability Workshop. March 2000.

[2] Haeni, Reto E. “Information Warfare: An
Introduction”. White Paper, George Washington
University. January 1997.

[3] Smith, Roger D. “Information Operations in Training
Simulation”. 2000 Spring Simulation
Interoperability Workshop. March 2000.

[4] Waag, Gary L. and Loental, Dave. “Information
Operations M&S: An Overview of Recent
Activities and a Role for Standards”. 2000
Spring Simulation Interoperability Workshop.
March 2000.

[5] U.S. Department of Defense. “High Level
Architecture Interface Specification”.
http://hla.dmso.mil/ . April 1998.

Author Biography

ROGER D. SMITH is the Technical Director for BTG
Inc. working on next -generation simulation applications

Table 4. MOM Services for IO Delay of Information
Mom Service IO Representation
UnsubscribeInteractionClass Disconnect a combat federate from its original source of interactions.
SubscribeInteractionClass Reconnect the combat federate to the IO generated interactions.
SubscribeObjectClassAttributes Disconnect the combat federate from its original source of object

attributes. Then connect the combat federate to the IO generate
object attributes.

and technologies. He is also the creator and instructor for
a series of military simulation courses that have educated
hundreds of simulation professionals. He is the Area
Editor for Distributed Simulation for ACM Transactions
on Modeling and Computer Simulation and has just
completed his term as Chair of the ACM Special Interest
Group on Simulation.

